Tuesday, May 9, 2023

Friday May 12th, 2023 Laura Lewis on Synthetic Tetrataenite: Extraterrestrial Origins and Terrestrial Consequences.

Northeastern University Professor Laura Lewis will speak on Synthetic Tetrataenite: Extraterrestrial Origins and Terrestrial Consequences. 21st-century aspirations for e-mobility, robots and drones require advanced permanent magnets which will approach an estimated 2027 market value of $36.9 billion. While the rare-earth “supermagnets” are excellent for these applications, demand is predicted to outstrip supply within a decade, motivating the search for new types of magnetic materials. One contender is the iron-nickel meteoritic mineral known as “tetrataenite” that could provide a magnetic energy product (BH)max in excess of 300 kJ/m3, ideal for so-called “gap magnet” applications. While comprised entirely of sustainable and easily accessible elements, tetrataenite, however, takes up to a billion years to form in nature. Terrestrial synthesis of tetrataenite-based magnets has the potential to revolutionize technology and upend geopolitically influenced supply chains. Addressing this challenge, enhancement tetrataenite formation has been rationally approached through the application of multiple energies applied during thermal processing of metallic precursors. This presentation will introduce new results concerning stabilization of tetrataenite achieved via special processing, supporting the case that attainment of L10 FeNi is indeed possible on earthly timescales.

Laura H. Lewis is the Distinguished University and Cabot Professor of Chemical Engineering and Professor of Mechanical and Industrial Engineering at Northeastern University in Boston, MA. Prior to her Northeastern University position, she was a research group leader and Associate Department Chair in the Nanoscience Department of Brookhaven National Laboratory (BNL). Concurrently, she was the Deputy Director of the BNL Center for Functional Nanomaterials, a DOE national user facility to provide researchers with state-of-the-art capabilities to fabricate and study nanoscale materials. Laura’s research focuses on investigating the materials factors at the atomic level that provide functionality to magnetic and electronic materials, with particular expertise in advanced permanent magnets. She has authored over 200 peer-reviewed publications and delivered over 100 invited presentations at national and international venues. She has participated on a number of advisory panels and currently serves on the Scientific Advisory Board of the Critical Materials Institute (a DOE Energy Innovation Hub). She is a Delegate of the U.S. Technical Advisory Groups to develop supply chain and sustainability standards to ISO TC298 (Rare Earths) and ISO TC333 (Lithium), on behalf of the American National Standards Institute (ANSI). Laura, a Fellow of the IEEE, was Conference Editor of the IEEE Transactions on Magnetics (2008 – 2018) and was Chair of the IEEE Magnetics Society Technical Committee (2017-2019). She is also a Fellow of the American Physical Society, a Fulbright Fellow as well as an elected member of JEMS-EMA (The European Magnetism Association), the Materials Research Society, the American Chemical Society and the American Society for Engineering Education.

Monday, May 8, 2023

Friday, April 28th, 2023 Ismaila Dabo on Data-Intensive Discovery of Earth-Abundant Semiconductors for Solar-to-Hydrogen Conversion

Penn State Professor Ismaila Dabo will speak on Data-Intensive Discovery of Earth-Abundant Semiconductors for Solar-to-Hydrogen Conversion. Renewable and sustainable solar generation of hydrogen is pivotal to diversifying the global energy supply away from fossil fuels in the transportation sector and across major branches of the industry, including ammonia synthesis, process metallurgy, and hydrocarbon production. While photovoltaics and electrolysis are increasingly mature technologies whose association may ultimately offer a viable path to produce hydrogen at scale, there is increasing debate over building a future hydrogen infrastructure that would massively rely on critical Pt-group metals and on photovoltaic devices, whose supply chains and global markets are largely controlled by non-domestic producers. Thus, there is strategic interest in developing novel classes of scalable semiconductors that can directly cleave water into oxygen and hydrogen under solar illumination by photocatalytic means. This presentation will discuss the use of data-intensive materials discovery workflow for narrowing down the choice of candidate semiconductors for solar hydrogen generation. Progress in predicting the optical properties of compound semiconductors will also be highlighted.


Ismaila Dabo is an Associate Professor in the Department of Materials Science and Engineering at Penn State University with joint appointments in the Penn State Institutes of Energy and the Environment, and in the Penn State Materials Research Institute. He received a Ph.D. in Materials Science and Engineering from MIT in 2008, working under the supervision of Nicola Marzari on the first-principles modeling of electrochemical solid–liquid interfaces. His recent awards include the Wilson Teaching Excellence Award (2021), Materials Science and Engineering Faculty of the Year Award (2021), Corning Chair in Materials Science and Engineering (2020). He currently serves on the editorial board of the journals Computational Materials Science (Elsevier) and Science (AAAS).

Friday, April 14th, 2023 Aziz Asphahani on Computational Materials Design and Engineering

Dr. Aziz Asphahani, Chairman and CEO of QuesTek Innovations, LLC, Evanston IL, will speak on Computational Materials Design and Engineering. Advanced materials are recognized as critical building blocks that drive significant innovations in key sectors of the global economy(e.g., Aerospace, Automotive, Defense, Energy, Medical). Also, these materials are being considered as key enablers in addressing the energy-climate challenges and accelerating the energy transition to near net zero emission targets. The advent of Integrated Computational Materials Engineering (ICME) technologies (built on thermodynamics and kinetics databases and aided by physics-based models and computational simulations) have led to the design and deployment of several advanced higher-performance alloys. As Artificial Intelligence (AI) and Machine Learning (ML) play important role in the discovery of new compounds, the ICME technologies coupled with the Accelerated Insertion of Materials (AIM) methodologies have been successful in designing and deploying novel, advanced alloys. The ICME/AIM implementations are also proven effective in the practices of Engineering Concurrency (combining innovative product design with advanced materials). The acquired expertise from 26 years of applying the ICME technologies, and the ensuing cumulative know-how are QuesTek basis for the development and implementation of predictive software packages in the form of an Integrated Computational Materials Design (ICMD®) platform. As envisioned in the ongoing Materials Genome Initiative, the ICMD platform will assist in breaking down barriers between materials discovery and deployment. Presently, the ICMD platform have demonstrated usefulness in predicting the physical properties of Additive Manufacturing (3D-printing) of metals, and in designing printable higher-performance alloys powders.

Dr. Asphahani’s early research activities were focused on identifying the parameters affecting alloys resistance to corrosion. His research involved assessing the mechanisms of hydrogen embrittlement and its deleterious impact on corrosion-resistant alloys (CRA). Furthermore, he identified the roles of key alloying elements that were essential to developing CRA with improved resistance to corrosion and wear [one of his patented alloys (HASTELLOY alloy C-22) was selected as a durable material to contain nuclear waste for the Yacca Mountain project]. QuesTek Innovations is a leader in developing and deploying novel, advanced materials based on Integrated Computational Materials Engineering (ICME) technologies and the Accelerated Insertion of Materials (AIM) methodologies, using genomic science-based data, and physics-based modeling. He holds eight patents. In 2017, Aziz was elected to the U.S. National Academy of Engineering "for executive leadership in STEM education, integrated computational design of materials, and innovation and production of corrosion-resistant alloys." He is a past president of ASM International and past chair of its educational foundation. His degrees include Diplome Ingenieur-Physique from École Centrale de Paris and a Ph.D. in Materials Science from MIT.